JOURNAL OF COMPUTATIONAL PHYSICS 110, 11-22 (1994)

Simulation of Particle Trajectories in Bifurcating Tubes
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A numerical method for computing aerosol particle trajectories in
bifurcating tubes has been elaborated. The model consists of three
characteristic parts: (i) construction of the geometry of the bifurcation,
{ii) calculation of the fluid flow field, and (iit) computation of the par-
ticle trajectories. The geometry was designed on a three-dimensional
computer mesh. The flow field was formulated by solving the steady-
state Navier-Stokes and Poisson equations with a finite difference
approximation. The particle trajectories were generated having
assumed the simultaneous action of inertial impaction, gravitational
sedimentation, Brownian motion, and interception mechanisms. With a
knowledge of particle trajectories one can examine the spatial distribu-
tion of deposition or the penetration efficiencies of particles in bifurca-
tions, In this paper only the model is detailed; its usage in examining
aerosol particle deposition in airway bifurcations is presented else-
where for both inhalation and exhalation.  © 1994 Academic Press, Inc.

1. INTRODUCTION

The behavior of aerosol particles or that of a particulate
suspension in a liquid (tyosol) in bifurcating tubes is impor-
tant in several fields of science and engineering, e.g., deposi-
tion of inhaled particles in the lung, the movement of blood
clots in veins, determination of deposition efficiencies of
ambient air or water samplers, penetration of radioactive
gerosols in the various ducts of nuclear power plants,
penetration of aerosols in ventilation systems in mining or
other industrial establishments,

A number of analytical and numerical methods have been
worked out to characterize the motion of aerosols and
lyosols in straight or bent tubes. However, despite the great
importance of the topic there is no appropriate model for
describing particle behavior in bifurcations. In virtually
every case bifurcations are modeled by bent or straight
tubes. We know of only a few exceptions: (i) that in which
the local deposition fluxes of agrosol particles int a symmetri-
cal tracheobronchial tree bifurcation are calculated having
supposed inertial impaction and diffusion deposition
mechanisms [177]. However, in [17] the effect of gravita-
tion is not taken into account; moreover, the impaction
mechanism assumptions are not sufficiently accurate for the
submicron particles they are treating (for more details see
Section 4); (ii) two-dimensional models are detailed in

[10, 11, 357; (iii) a numerical model for particle deposition
in bifurcating tubes was outlined in [30], but—so far as 1
am aware—no details have ever been elaborated; (iv} in
[14] a two-dimensional model computes the air flow only
and not the trajectories of particles; (v) the model in [26]
considers tubes of rectangular cross section, and impaction
angd pgravitation are considered only when computing
particle motion.

Here a numerical model is given for calculating trajec-
torics and deposition sites of spherical particles in a
symmetrical or asymmetrical tube bifurcation with either
a narrow or wide bifurcation region. Since the fluid is
assumed to be incompressible the model can be applied only
for subsonic gas velocities in which the relative pressure
drop is small. Here we would mention that in human air-
ways the pressure differences are very small and the pressure
varies as much within the cross section of an airway as it
does across a junction [20,29]}. Moreover, we assume
laminar flow and employ the steady-state Navier-Stokes
equations. It is worth noting here that in [ 34] the authors
measured the formation of the flow field in bifurcations in
analogy with the airways in humans and they found no tur-
bulence; they did, however, find strong asymmetry in the
Nlow at the carinal ridge and effective secondary flows in
the daughter airways for inhalation. Despite this, the fact
that we assume laminar steady-state flow means some
limitations in the applicability of the model mainly at high
flow rates {and Re numbers) in the upper airways.

2. CONSTRUCTION OF THE BIFURCATION GEOMETRY

A bifurcation is constructed from a parent branch and
two daughter branches. It is a system in which three straight
tube sections are joined together by a central zone. Because
of the noncylindrical symmetry of the central part of the
system the geometry of the bifurcation is generated in a
Cartesian coordinate system by a cubic computer mesh, The
bifurcation is characterized by eleven parameters: branch
lengths L,,, L g, Ls4, Lag; branch diameters D,, D,,,
D ,p; branching angles o ,, a5; and two other angles § ,, i
which are the angles between the respective daughter
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FIG. 1.

Bifurcation geometry.

branches and the z=0 plane. Indexes p and d refer to the
parent and daughter branches, and indexes 4 and B are
refated to the respective sides of daughters 4 and B. The
value of coordinate y increases along daughter 4 and
decreases along daughter B. (In some cases y is constant
along the daughter branches.) The lengths of the daughters
(L4, Lyg) are the arithmetic means of L, and L, , or
L,z and L., respectively (see Fig. 1). The axis of the
parent airway is assumed to be parallel to the x-axis and the
entrance of the parent tube lies in the x=0 plane. The
position of the bifurcation in relation to gravity is optional.

A schematic projection of the bifurcation is shown in
Fig. 1. The main relations between the parameters displayed
in the figure are summarized as follows:

A. If neither of the branching angles is zero:

D —D,cosa,

x,=L,, +-F—="—=
2sina,

Dyg—Dycosag

x;=L z+ -
. 2sinag

tan a
Ttana,+tanag\ 74
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Narrow and wide central parts of the bifurcation are
defined in the following way:

(i) for a narrow bifurcation region the x coordinate
of plane I'in Fig. 1 is

I=L,, (4)

where
Lps = min(LpA L LpB)' (5)

{(ii} for a wide bifurcation region the x coordinate of
plane /in Fig. 1 is

I=LpA+LpB_K! (6)
where
x,+ L
K=—_" 7
5 (7)
and
L,.=max(L,,,L,p). (8

Because K > x, is considered to be an unrealistic shape, it is
omitted from the analysis.

The parameters L,,, and L, are determined by the
equations

xy—L,,— Dy, sinu,
Ld’Al =L+

: 9)

2cosa,

s—L,g—Dgpsinag (10)
2cosay ’

X
Ligi=Lg+

in addition L,,, and Lz, are given by (9), (10), and the
definitions of L, and L g, ie., the lengths of the daughters,
are the arithmeticmeansof L, and L, or Lz, and L 4p,.

B. [If one of the branching angles is zero, let o, = 0:

X, = —o0, (11}
X, is given by (2), and
Dg 2D, —D,
= . 12
s x2+25incx5 2tgag (12)

In the case of monopodial branchings, Lys=L,g; thus

x;—L
Lagi =Ly +_3“‘5_£i-

(13)

The geometry of the bifurcation is built up on a three-
dimensional computer mesh of cubic elementary cells. The
coordinates of the grid points were constructed on the basis
of the equations which characterize the geometry of the
bifurcation. The parent and the daughter branches are
straight cylinders joined together by a central bifurcation
zone whose superficies are generated by a smoothing func- |
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FIG. 2. Schematic illustration of construction of central bifurcation
zone.

tion [19]. This central region is bordered by x=1 and
x = K planes and, in addition, by straight sections between
these two planes connecting the surfaces of the parent and
the daughter branches in such a way that the azimuthal
angles on the x=7 and x= K planes of these straight
sections (@, and ¢, on Fig. 2) are identical to each other.
The apexes of the angles of @, and ¢, are in a direct ling
with the axis of the parent branch (see Fig. 2).

The point in choosing both narrow and wide central
bifurcation regions is that the width of this central part may
significantly influence the fluid field in the vicinity of the
carinal ridge and consequently may affect the trajectories
and the accidental deposition of particles.

When generating the computer mesh a code number is
assigned to each node point: first, in order to distinguish
whether a given mesh point is in, on, or ouside—within less
than the elementary grid cell distance—the coordinates of
the bifurcation; second, to characterize to which part of the
bifurcation the point belongs. In such a way the form of the
generated computer mesh covers the required bifurcation
and this code number is extremely useful for every part of
the numerical analysis as a means of identifying the different
sections of the bifurcation.

3. COMPUTATION OF THE FLUID VELOCITY FIELD

For determining the fluid flow ficld the Navier-Stokes
equation (14) and the continuity equation {15) have been
applied,

dv 1 JI—
E+(v-V)v-g—pr+;Vv (14)

and

Vv =0, (15)

where v is the velocity of the fluid, g is the gravitational
acceleration, p, p, and p are the pressure, density, and
viscosity of the fluid, respectively [12].

A finite difference approximation was utilized to solve
(14) and (135), viz. the hybrid method of the stream function
vorticity approach and the primitive variable approach [1].
The independent variables of this technique are the velocity
and the vorticity of the fluid. Taking the rotation of (14), the
pressure 15 eliminated and the result is [36]:

a—w=Vx(vxw)+vV2w,

ét (16)

where @ = V x v is the vorticity, and v is the kinetic viscosity
of the fluid. With this method the vorticity is obtained from
(16} and the velocity from the Poisson equation below:

Viv=_—Vxm (1

It is known (e.g., [2, 13, 31]) that the continuity equation,
(15), is automatically satisfied by applying this method,

The course of the solution is the following: It begins with
the determination of the initial conditions, i.e., with the
specification of v and @ =V x v at each mesh point at t = 0.
Then, as in the first step of a cyclical procedure, we deter-
mine /¢t from the transport equation of the vorticity, i.c.,
from (16), at every node point. In the next step we compute
@'t from the following equation [1, 16, 33],

(18)
where

At=min (&), i=x, v,z

. (19)
Here, v, represents the velocity components and #; is the dis-
tance of the node points from each other along x, y, and z
coordinates. The value of parameter fis 0 < f< 1 [33]. The
higher the value of f the faster the iteration. However, if the
value of fis increased, the probability of lack of convergence
is greater. By solving (17) the value of v/ *# is given. Then,
returning to (16), we continue the cycle until a required
convergence criterion is satisfied. The velocity components
in {17) were computed by an explicit scheme,

Two convergence criteria are defined: one for the
vorticity, (20), and one for the velocity, (21) [19],

1 N wt_+dr_w{
max{ﬁ(z l_—,')}&zfn i=x, yz, (20)

n=1 w;
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and

F):-+A'—-v;
’ 5t "{"—62’

i

i=x, ¥,z (21}
where N is the number of node points in the planes per-
pendicular to the x-axis, @!is the average value of w; for all
mesh points at time ¢, £, is the accuracy limit of the con-
vergence criterion for the maximum change of the
integrated relative vorticity at all points of the planes
perpendicular to the x-axis for each coordinate during time
interval At, i} is the average value of v; for all inner mesh
points (mesh points within the surface of the bifurcation) at
time ¢, and &, is the accuracy limit of the convergence
criterion for the maximum change of the relative velocity at
each inner node point for each coordinate during time
interval 4. Thus, convergence criteria have been defined in
the case of vorticity concerning the planes perpendicular to
axis x and in the case of velocity concerning each inner node
point.

In order to soive the Navier-Stokes and Poisson equa-
tions, forward or central differences bave been applied for
the space coordinates and forward differences for time. It is
well known that the forward differences provide greater
stability, but the:central differences supply faster con-
vergency. Because in our case the central differences did not
resull in divergency for the final form of the model, we kept
to the central space differences.

For the sake of faster convergence and greater stability
slight underrelaxation was applied for the velocity com-
ponents. That 1s, having determined »;* ** from {17) in the
course of an iteration, further on *v!*“ is applied, where

Pl =gt (1—a) o, O<a<l

L

(22)

Here « is the underrelaxation coefficient.
As an example the finite-difference representation of the
derivatives du/dx and a 8%u/dx? is:

u\" uf'_,,ljk—u’-l_ijk
ik S/ Tl / I 23
6)(),-‘]‘;( Zh ( )
and
@\n =u?+1,j,k‘ﬁ2u2j‘k+u?—l'j‘k (24)
6'3372 i ok k2 ,

where u is the x component of the fluid velocity at the space
points /, j, k and time coordinate #; and £ is a constant grid
distance.

The direction of marching when computing w and ¥ from
node point to node point was always reversed between two
successive iterations in order to accelerate convergence and
for more effective feedback of the boundary conditions
[32]

It is impossible to build up the exact geometry of the
bifurcation from cube-shaped elementary cells. On the other
hand, in order to calculate particle trajectories and particle
deposition, the most accurate possible description of the
flow field is required in the vicinity of the surface of bifurca-
tion. Irregular mesh points have been introduced to solve
the problem. These mesh points are generated at the
intersections of the wall of the bifurcation and the edges of
the elementary cells. These intersections can be compuied in
an elementary mathematical way.

The fact that at the points next to the irregular mesh
points the aforementioned central difference schemes are
not applicable involves some difficulties because the mesh
point distances in positive and negative directions are
different. In these cases the model makes use of one of the
following three methods:

(i) The use of first- and second-order Taylor series
expansion for the difference scheme. If we keep to examples
(23), (24} we obtain the formulae:

ib_[)n :H:_'+ l'j’k+(&2.__1)u:j!k'*a2[l?7 ik (25)
0X/ 1y a(a+1)h
and

(2[“?+ Lkt i Lk (@ +1) “’Ea‘,k)
a2u>n B +(a3—oc)(h_)6u/6x):’j,;] (")6}
ox? i,j.k_ a4+ D)(h_Y T

where a=h__/h_.Here, h, and & _ are the distances of the
node points in positive and negative directions, respectively.

(ii) The use of Taylor series expansion for the first
derivatives only. For the second derivatives, the definition
of the central difference scheme for the asymmetric interval
is applied twice, so the following expression is derivable,
keeping the example of 8%u/dx>:

5211)" _ 2
0x2 )i RLala+1)

X [ufy, o=@+ 1)uf o] | 0] (27)

(iii) The calculation of w and v by interpolation using
the adjoining six mesh points. As an example the velocity
component in direction x at points i, j, k at time ¢ is
approximated as

h
W) e
bk kx;+k,r+

, h,_
ol gt (ufjﬂ.k_“ifj—l,k)r j}—h
- et

|
n — n 53 -
“f,j,k*3 ARSI o UL

" L n h:"‘
+ur’.j,k—l+(ui_j,k+1+ur’,j,kf1)h_ _+h_i]’ (28)
z— 4
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where A,_ and h_, are the distances of the neighboring
node points in positive and negative x directions. The
meanings of 1, , k,,, h._,and k., are similar, but for the
y and z directions.

Of the three methods, the first gives the most accurate
approximation and the third is the least precise, supposing
that in the course of the iterations the procedure does not
result in divergence. Such a divergence may occur in the first
and second cases if an inner node point is very near the
surface, i.e., near to an irregular mesh point, so the central
difference scheme is highly asymmetric. For the solution of
this problem the computer program applies the following
method: if the program arrives at an inner node point,
which has at least one irregular mesh point neighbor, then
the program calculates the distance of the nearest adjoining
node point from the six. If it is greater than @,, then the
program computes according to the first method. If it is
between @, and @,, where @, > @,, then the program
follows the second method. Finally, if it is less than Q,, then
the program calculates the components of o and v on the
basis of the linear interpolation method. Here, 0, and @,
are empirical input parameters. Their values are between
zero and one, supposing that the elementary cell distance
is unity. During the running of the program it is worth
following with attention the maximum and minimum values
of the @ and v components along the mesh points as well as
their maximum changes during the iterations, together with
the space coordinates of these node points. In such a way
the lack of convergence or unrealistic @ or v values can
already be recognized at the beginning. If this happens, it is
necessary to increase the values of @, and/or (2,. After
these considerations let us see the initial and boundary
conditions.

3.1. Initial Conditions

The model is worked out for both uniform and parabolic
initial flow profile conditions. When constructing the flow
field it 1s supposed that the flow rate is constant along the
length of the system. The directions of initial flow in the
parent and daughter branches are parallel with the axes of
the branches. In the central part this direction is defined
between the directions of the parent and daughter branches,
The iteration procedure for solving the Navier-Stokes
equations is not very sensitive to the initial conditions, in
contrast to the boundary conditions. A more detailed
description of the initial conditions is given in [6].

The absolute value of the velocity along the axes of
branches is obtained by the average velocity characteristic
of the branch and by the type of initial flow profile. The
average velocity in the daughters (v,) 1s

2
RP

v, ———, (29
PRyt Koy ’

by—

saLfilog1-2

where v, is the average velocity in the parent branch. The
absolute value of velocity in the central part along the CD
section (see Fig. 1} is computed from the appropriate
velocity values of the C and D points by linear interpolation.
The model supposes that at point D the absolute velocity
is v,.

At points which do not lie on the axes the absolute value
of velocity is computed on the basis of the presumed flow
profile and the axial velocity values. In the case of the cen-
tral part the calculation is quite circuitous because in this
case it is necessary to determine at a given point the distance
from not only the axis but from the surface as well, and the
surface is not characterized by an analytical expression.

For a uniform initial velocity profile the velocity has to be
kept to zero at the wall; otherwise an infinitely large velocity
gradient would arise at the surface of the bifurcation. In this
case a linearly varying velocity field is defined in radial
directions in the surroundings of the wall, resulting in a
truncated cone shape flow profile in the branches. The per-
centage of the branch radius where the velocity decreases in
the vicinity of the walls in the case of uniform flow is an
input parameter of the program.

The sum of the flow rates in the two daughters has to be
equal with that in the parent branch. However, the ratio of
the branch flow rates of the two daughters may be presented
as an input parameter of the model. In this case the
velocitics given by (29) are modified with this input
parameter.

3.2. Boundary Conditions

As the computation method is highly sensitive to the
boundary conditions, these should be determined as
accurately as possible. Let us see these conditions at the
inlet (i), at the outlet (ii), and on the surface of the bifurca-
tion {iii):

(i) Parabolic or uniform, stationary inlet boundary
fluid flow is supposed in the model. In the case of uniform
flow in the vicinity of the wall the velocity decreases linearly
to zero, as has been discussed above. The vorticity is also
kept constant in time at the inlet boundary.

(i1) At the outlet boundary it is presumed that both the
velocity and the vorticity components have the same value
as they have one layer before at the same cross-sectional
point. If this identical cross-sectional point is not a node
point then v and o are computed from the appropriate
values of the surrounding points in the vicinity of the outlet
boundary.

The value of flow rate at the outlet(s) has to be the same
as at the inlet(s) because of the law of mass conservation. To
check mass and momentum conservation, the computer
program composes the integral of the axial velocity com-
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ponents at the outlet(s) and forms the quotient of this with
the inlet flow rate(s). The result is a quite useful parameter
(&) for checking the fulfillment of the continuity equation. If
this £ is not near unity, it means that the computation
methods is not appropriate. The written computer program
records and displays the value of ¢ during the iterations and
multiplies the axial velocity values by ¢ at the outlet(s) after
every second iteration.

It may occur that the flow is asymmetrical even if the
geometry is symmetrical {e.g., if one of the daughters is
evacuated more strongly than the other). Because in the
applied numeric technique the pressure is not a variable, we
describe this possible flow asymmetry with the proper
definition of Mlow velocity at the ends of the daughter
branches. Namely the ratio of flow rates at the ends of the
daughter branches may be presented as an input parameter.
In such cases the computed velocity values at each iteration
at the outlets, for inhalation, are multiplied by a factor given
by the assumptions that (i) the sum of the two flow rates in
the daughters is equal to the inlet flow rate, (i) the ratio of
the two flow rates in the daughters is an input parameter.
In case of exhalation the sum and the ratio of the two inlet
flow rates are input parameters.

(iii) The third case—the boundary conditions on the
surface of the bifurcation—is a somewhat more complex
task. The main points of this are described below.

At the surface every component of the velocity is zero, As
a consequence eddies cannot occur on the wall; i.e., the vor-
ticity component perpendicular to the wall must be zero on
the surface. For this, when calculating the vorticity on the
wall in the case of each surficial mesh point it is worth intro-
ducing a new coordinate system where one of the axes is
normal to the surface [33]. So the course of the computa-
tion is the following: (1) Let us define a right-handed rec-
tangular Cartesian coordinate system x', y', z’, where the
axis x’ is perpendicular to the wall and it is directed towards
the inner side of the surface. Let the origin be the point P,
where we intend to calculate . (2) Let us select two points
P, and P, on the x’ axis so that P, P = P P,, at the inner
side of the bifurcation, in such a way that the distances of
these points are close to the grid distance of the computer
mesh. (3) Calculate the v(x, v, w) fluid velocity at P, and P,.
(4) In the knowledge of v determine v'(«', v/, w') at P, and
P,. (5) Compute the vorticity o'(a’, f, ') by means of a
three-point forward difference approximation. (6) By the
transformation of ®’ we obtain ®. A detailed description of
these six procedures is given in [6].

In the model the surface of the bifurcation is regarded as
a smooth surface and so, in the case of airways, the effect of
cilia and flagella or the corrugated nature of the airway
surfaces are not considered.

3.3. Symmetry Planes

The geometry of the bifurcation may have zero, one, or
two symmetry planes. The geometric symmetry plane does
not necessarily entail symmetric flow. Above Reynolds
number (Re =uvR/v) 1150 it is generally not recommended
that a flow symmetry plane be defined and thus decrease the
degree of freedom of the flow because of the possible
turbulence. Below Re= 1130, if it is reasonable then it is
permissible. Here we do not deal with the effect of the
defined flow symmetry planes. Qur conclusions on this are
summarized in [67]. We would just mention that the defined
symmetry planes really symmetrize the computed flow field.
However, they also restrict the flow to some degree.
Furthermore, it is supposed in every case that the occa-
sional geometric symmetry planes of the bifurcation lie
among the mesh points in the middle of the computer grid.

4. COMPUTATION OF PARTICLE TRAJECTORIES

Four different physical deposition mechanisms are taken
into consideration by the model. These are: inertial impac-
tion, gravitational sedimentation, Brownian diffusion, and
interception.

4.1. Inertial Impaction and Gravitational Sedimentation

The motion equation of particles under the effect of
inertial forces is described by the Basset-Boussinesg—Oseen
equation [28]. If one incorporates the additional influence
of the gravitational force and supposes that the particle
density is much higher than that of the fluid, the motion
equation can be described as

1=\ m 2 (120 g
o mdt_ c 8 B’

where m is the mass of the particle, u and v are the velocities
of the particle and the fluid, respectively; B=K,,/(3nu d,)
is the mechanical mobility of the particle, K, is the
Cunningham correction factor or slip factor, u is the
viscosity of the fluid, d, is the particle diameter, o and 4 are
the densities of the particle and the fluid, respectively, g is
the gravitational acceleration, and ¢ is the time.
The solution of {30) is

(30)

4 41
i

u =i, + (' —x,) e, i=x, ez (31)

where ! and u}" %' are the ith velocity components of the

particle at time 7 and ¢ + Ar, respectively; moreover,

wn-9(1-)

(32)
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and

k;={g;+v. (33)

Here 7 is the relaxation time of the particle, and g, and v/ are
the /th components of g and v, respectively, at time &.

The translation of the particle during the time interval
between ¢t and { + 4t is

Ar
!:+dr=]:+J [k, + (u!—x;)e "] dr, i=x, 2
0
(34)

where /! and [{*9' are the ith space coordinates of the
particle at time 7 and ¢ + At, respectively, and ¢ is the time
elapsed since 7. From (34), the equation which describes the
particle trajectories—supposing inertial impaction and
sedimentation—is

PHa={' b, di+ (4 —x) {(1—e ),  i=xp2z

(35)

However, there are some difficulties in applying this
method. Namely, if the step time, 4¢, is much higher than
the relaxation time of the particle, t = m B, then the velocity
of the particle approaches the constant velocity of fluid, v},
at the very beginning of Ar and then moves together with the
fluid, independently of the diameter and density of the par-
ticle. As a consequence, the computed particie trajectories
are virtually the streamlines of fluid and not the trajectories
of the particles. We cannot choose an arbitrarily short inter-
val At since the speed of the computers is limited. So with
this method we can hardly calculate, say, particle deposition
efficiencies for submicron particles where t is quite short.
This is the reason that the way in which [17]) computed the
deposition flux by impaction is likely to be ineffective
for submicron particle sizes, as was mentioned in the
Introduction. The opinion given in [25] is similar.

The following procedure can be used to solve the
aforementioned problem. First, calculate by (33) the
approximate translation /{4 of the particle during A at
constant fluid velocity vi. Then determine the fluid velocity
at that point, *v'* Finally, supposing constant fluid
velocity gradient during Az, compute 71+

The motion equation, here, obtains the same form as
(33), but instead of v we can now write:

¥+t (36)

and

(37)

where v, =v' and v, = *v' " ¥, The solution of (36) is

Wt =b LAt =) +al+ (wi—a{+ ) e M,
(38)

i=x, yz,
and

[ A =y (Db, At + a,— b,L) At + (! — a,{ +5,)

x (1 —e~7%y], i=x, y,z, (39)
where
o wpitdr_ gt
=g, +—, hy=—=t 40
a; g.+c ; T (40)

The asterisk denotes that in this case the fluid velocity at
t+ At is considered not in the final space, i.c.,, not at the
peoint given by (39), but at the point given by (35). The
velocity of the fluid at a fixed point (v, *v' ¥, v'*¥) is
computed by interpolation from the velocity values in the
mesh peints around this space (see Section 4.4).

Figure 3 represents the difference between the results of
the two aforementioned levels of approximation for com-
puting the inertial impaction mechanism. The results of the
method given by (30)-(35) are shown in Fig. 3a; the results
of the method given by (30)-(40} are shown in Fig. 3b. It
can be seen from Fig. 3 that if the fluid velocity is constant
during 4+, then the calculated path of the particle is practi-
cally independent of the particle’s diameter and follows the
streamlines of the fluid (supposing that A: > t). However, if
in the neighborhood of /] we know the velocity of the fluid,
and we suppose that the velocity field is linear, and we then
solve analytically the motion equation of particles, then,
thanks to the analytical solution, we solve (35) for
infinitesimally small Az Thus, the problem around At <t
automatically vanishes. We can say that the second method
is not clearly numeric, it is numeric outside 4¢ and analytic
within A¢ This analysis enables us to calculate well-
separated, real particle trajectories (Fig. 3b).

4.2. Brownian Motion

The translation of particles by Brownian motion at times
0, 41, 2 4t, ... is treatable as a Markov process if 4f» 1,
where T = mB is the relaxation time of the particles [15]. In
this case, the probability distribution of the distances I
travelled by the particle by Brownian motion along one
coordinate during A4¢ is given by the Fokker—Planck
equation and has the form

2 * .
e~ lmfromar i=x, y 2z, (41)

1
pilg, A1) = — e
8 2 /nD* Mt
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where — o0 <l < 00, i=x, y, z, and D* =kTB is the diffu-
sion coefficient of the particle, k is the Boltzmann constant,
T is the absolute temperature, and B is the mechanical
mobitity of the particle [18]. Values of /4, were selected
from the normal distribution (41) by the Monte Carlo
procedure published in [27].

If A7 <1, then the velocity of particles during 4¢ by
Brownian motion along one coordinate, ug;, is selected
from Maxwell’s velocity distribution of the kinetic gas
theory:

Plug)= \/m g—mufg,/ukr)!

where m is the mass of the particile, £ is the Boltzmann
constant, and 7' is the absolute temperature, Values of uy;
{— o0 <up < oo) were also selected by the Monte Carlo
technique of [27]. The translation by Brownian motion was
computed by the expression

(42)

I=x, vz

dgi=ug, A1, i=x, p z (43)

The total displacement of the particle—by inertial
impaction, gravitational sedimentation, and Brownian
motion—along one coordinate, [, was computed as

follows;

(a) [If Ar» 1, then L, is the sum of the translations given
by (39) and (41).

(b} If Ar<7, then L,is the sum of the translations given
by (39) and (43).

(c) If neither (a) nor (b) is fulfilled, ie., when 0.2 <
Atfr <5, then the computer program decreases At in order
to satisfy condition (b).

4.3, Interception

When modeling the deposition of spherical particles, the
particles are considered to be deposited if their center of
mass approaches the wall of the bifurcation to a distance of

IMustration of difference between results of two inertial impaction models: (a) ¥ = const during 4¢, (b) grad v = const during A+,

d,j2. When the computer program examines whether or not
the point where the particle resides has reached the wall of
the bifurcation, then branch diameters are decreased by d,,.
In the case of the central part, this procedure claims a
comparatively lengthy computation.

4.4. Special Problems

In this section several additional parts of the model are
discussed.

{1} The knowledge of fiuid velocity, v, at an arbitrary
point of the bifurcation is required both for {30)-(40) and
for the computation of vorticity at the wall. In Section 4.3
the determination of fluid velocity at the node points was
discussed by solving the Navier—Stokes and Poisson equa-
tions. Now, the determination of fluid velocity within an
elementary cell is introduced.

If the whole elementary cell is within the bifurcation then
the velocity is computed by linear interpolation from the
velocities at the eight surrounding grid points. In this proce-
dure, first we determine the velocities at the appropriate
points of the twelve edges of the cell, then on the six faces,
and finally at the point of interest within the elementary cell,
for each velocity component by linear interpolation.

If the elementary cell touches or intersects the surface of
the bifurcation, then the fluid velocity components, v,
i=x, y,z, at the given point are computed from the
appropriate velocity component values of the vertexes of the
elementary cell that are within the bifurcation (inner grid
points). The computation is

i=x, ¥z (44)

where v, is the ith vel